Power Supplies
Outdoor Power Supply: Robust Solutions
Published
4 years agoon
By
Roze AshleyA Changing World & A Variety of Uses
Natural disasters are just a question of time and rapidly increasing worldwide. Japan in 2007 suffered from several of these natural disasters including two typhoons and two major earthquakes in just one year. Christchurch in New Zealand still has not been rebuilt due to a shortage of skilled labour and supporting infrastructure. In 2007 flooding caused rockslides in Peru that nearly destroyed some of the Nazca geoglyphs which are situated in a desert region and attributed to climate change. To counter such challenges governments have planned disaster-response measures and risk management strategies to cope with these increasing events.
An outdoor power supply must supply power for extended periods of time, withstand operation conditions, be reliable, and be designed to be a light and compact form factor. Outdoor power systems are being purchased by the military not just for emergence operations but also as a backup or primary source of power for mobile platforms. Emergency services also use these devices to help them conduct rescue, extraction and support operations during natural disasters and events caused by region destabilisation. Private corporations and individuals are also starting to recognise the need to keep their operations running with uses relating to communications, operations and security systems in more challenging climates.
The uses of outdoor power supplies include supporting field hospitals, mobile vaccine centres, essential infrastructure, flood monitors and rescue teams. Rescue teams may use these to aid extraction and evacuation activities as well as providing warmth and powering communication systems such as mobile satellites, computers and mobile devices where possible.
In addition to disasters and emergencies out door power sources have uses for mobile teams supporting expeditions, veterinary teams, outdoor events and extreme sports coverage. In the US each year more people are becoming what is termed as ‘mobile homeless’, they sell their possessions and travel the US in RVs to reduce their outgoings. Each one of them needs effective robust power supplies to power fridges, heaters, cookers, as well as all-in-one portable solutions.
Backup Power Supplies
Communication centres and wireless hotspot systems typically use backup power supplies that run-on lead-acid batteries. While these are good when your energy usage is within the performance limits of the battery, they are a low energy density battery meaning you need larger and heavier systems for longer running times. Additionally, for systems that use longer lasting deep cycle batteries, you need to regularly check and maintain the battery. An alternative to lead-acid batteries are nickel metal-hydride (NiMH) batteries that can store up to three times more energy and also have charge-discharge cycles that can operate up to 55 ºC.
Battery Design
Outdoor power supply designs using NiMH technology are designed to protect against extreme weather unfortunately in high temperature environments a fanless design is still difficult to produce. The cabinet or battery case is typically coated with infra-red reflective material to reduce internal temperatures through exposure to radiant heat. In some conditions through integrating conductive techniques to diffuse internal temperature a fully sealed unit is possible and useful in military applications where fan noise should be avoided along with maintenance of wearable parts; the fan.
While battery cell design is fairly simple and easy to add to a new design, the technology driving their usage are critical to their success in terms of dependability, durability, efficiency and safety. An overcharge and over-discharge protection circuit for example is needed so the device does not suffer an early death, while some storage batteries may need a battery deterioration circuit to tell the user when maintenance is required.
The Future of Outdoor Power Supplies
Battery energy densities will be substantially improved through the use of nanomaterials for the battery cells allowing more charge to be stored and have much faster charge and discharge cycles. Currently however these are lab-based prototypes waiting for cost effective manufacturing processes to be designed and allow these to be integrated into the marketplace.
Years of covering technology and startup news.
You may like
Power Supplies
Military Grade Power Supplies
Published
2 years agoon
August 13, 2022By
Marks StrandHave you ever wondered how the military powers all their equipment? It’s not as simple as we have it – can’t just call the power company and boom, there was light. There are power supplies in virtually every military electronic system.
These devices come in all shapes and sizes. On matter functionality, it’s not that different from their commercial counterparts. They too have advanced power conversion solutions like AC/DC, DC/DC and other configurations.
How Different Are They?
The main difference between defense power supplies and their commercial siblings has been reliability. See how annoyed you get when there is a power outage? Well, imagine that in the military.
It is no longer simply a matter of inconvenience but potentially catastrophic failure and loss of life. Military power supplies were designed with a long mean time between failure as the main goal being delivering years of trouble-free operation.
What the Scene Is Like Today
The standard has remained reliable, with their MTBF being way higher than those of their commercial counterparts. On top of that, they are being upgraded every two years – just like consumer electronics I might add.
Every upgrade renders previous generations obsolete. This spells out obsolescence and availability issues. For long term reliability, the ability to recognize pending failure has become very important.
When it’s all said and done, military grade supplies have to meet specific requirements. These requirements include detailed guidelines for selecting components that are part of each supply not to mention a rigorous set of design rules to ensure manufacturability.
Let’s look at some of these guidelines:
Guidelines for Military Power Supply
Part Selection and Design
Part selection is a very important step in designing defense power supplies. All components that will be part of the product have to be approved and qualified by the manufacturer for use in any military system or be qualified for the application by the manufacturer of the power supply. This process serves 2 purposes:
- Establish that a stable source of supply for the component exists and adequate control procedures are in place
- Prevent the usage of restricted materials that can degrade during normal usage.
Over time, life cycles of advanced power conversion solutions have dwindled in importance although that remains a requirement in military electronic systems. Military electronic systems must be replaceable or at least repairable throughout their lifetime. This places extra demands on military grade power supplies manufacturers.
Application Requirements
Different branches of the military have published detailed sets of requirements that establish what is to be expected of power supplies from all military systems deployed in the field. These standards focus on performance issues as well as the working environment which can impact reliability.
Input voltage conditions for tactical military applications cover electromagnetic compatibility and input levels. Electromagnetic compatibility standards demand the amount of conducted RF energy the device must be able to withstand and still operate properly.
It usually is 40 dB or more. Commercially available filters that meet the requirements for commercial noise suppression cannot achieve this level of signal rejection.
With all that in mind, it is safe to conclude that each military power supply application must be approached individually to construct filters and maintain proper impedance matching characteristics to eliminate radiated noise at the input.
Power Supplies
The Operation of the DC Power Supply
Published
2 years agoon
August 11, 2022By
Marks StrandMost common power supply devices adapt alternating current power from an electrical source to the voltage, current, and frequency that the device needs. Stepping the voltages up or down, followed by filtering, is how it’s done. The device receives electrical power in a secure and regulated manner as a consequence.
Other energy sources, such as solar or chemical energy, can be converted into electrical energy in some models. In larger devices like desktop computers, a power supply is either internal or external, as seen in laptops and phone chargers.
Programmable DC Power Supply
The output voltages can be remotely controlled by a programmable DC power supply utilizing an analog control signal that can be altered by a rotary switch that is frequently seen on the front panel.
Current and voltage output are two often modifiable power supply features. Alternating current power supplies allow for the frequency to be programmed as well.
Electronic Load
Manufacturers of power supplies must dynamically test their products. Electronic load provides them the ability to quickly and cheaply simulate various power levels in place of using fixed-resistor banks of different sizes. It also aids in the analysis of a wide variety of power sources, including batteries, fuel cells, and electromechanical sources like converters and inverters.
It may also be used as a high-speed current modulator to boost a power supply’s efficiency. In such cases, just a part of the rated capacity of the power source is needed. The voltage across the load is extremely low when the current is modulated to its maximum. As the current is modulated off, the voltage increases to its highest point.
The load power needed for a current modulation from zero to maximum typically equates to one-quarter of the operating voltage times the current rating plus a buffer.
The Dc to Dc Converter
They are employed to modify the voltage level. They are constructed around a wiring system that makes use of electronic switching technologies.
They can accommodate both applications requiring very low voltage and those requiring very high voltage, and it is most frequently used when a linear regulator is not the optimum solution.
The Function of DC to DC Converter
Numerous electrical equipment and circuits in a variety of applications require a voltage that is either lower or greater than what the power source provides.
In such cases, a circuit is required to convert or modify the electrical voltage level of the incoming power. The dc to dc converter makes it possible to transfer electrical power effectively, which makes it ideal for use in gadgets like mobile phones and laptop computers.
Conclusion
Think about the many parts that make up your device and how each one will require a specific current and voltage to function properly. The screen display won’t be powered by the supply voltage because it is the device’s CPU.
Therefore, in order to handle the power supply of various voltage domains, you will require a converter that can either step up or step down the voltage level.
Let us break it down a bit for a better understanding. If you were keen in science class, you probably remember the teacher mentioning that DC stands for direct current. Direct current is a unidirectional flow of electric charge – the direct opposite of AC, alternating current.
Simply put, a defense DC-DC converter is an isolated, thick-film hybrid converter for flight critical applications with extreme temperature requirements. They efficiently produce a regulated DC voltage from a source that may or may not be well controlled to a load that may or may not be constant.
DC-DC Conversion
A DC-DC converter is a type of electronic circuit that takes DC source and converts it from the current voltage into another voltage. Now I know this sounds like describing a word with the word but it’s not quite it.
The conversion sometimes can involve increasing or decreasing the voltage. A perfect example of DC-DC conversion is your portable DVD player. Whenever you are going to work jamming to some music, the player has to draw the power from the car battery.
Now too much power may damage it and too little power may not run it. That is exactly why DC-DC conversion is important. The applications of a military DC DC converter may not be as simple and melodious but the idea is pretty much the same.
They for one need to be ruggedized which leads me to a side note:
Ruggedized Power Supply
A rugged power supply is a form of power supply capable of withstanding a variety of unfavorable environmental conditions – however challenging they may be. This comes in handy in military applications. These power supplies were built to withstand extreme environmental and weather conditions like extreme altitude, temperature, vibrations and shock.
Ruggedized power supplies are related to DC-DC converters in that they themselves are DC-DC converters. Regardless of where these power supplies are being used, their purpose is: provide regulated voltage.
Regardless of the source input, the output should be converted to DC. There are both rugged AC-DC and DC-DC power supply units. Just about all electronics require regulated power supplies to function correctly. Without regulated power supply, large fluctuations can occur delivering unsuitable power needs. Regulating the power maintains steady power supply which prevents outages and avoids overloads.
Using non-rugged power supplies in non-ideal conditions will have you having to provide continual maintenance, deal with breakdowns and downtime of course.
Applications of Rugged Power Supply
Ground Vehicles
A rugged vehicle power supply is useful both in and outside of the military scope. Just about any car needs to withstand a host of climates and environmental conditions. Vehicles often travel over rough terrain through dirt, sand, humid areas and marshy areas. On top of using rugged power supplies, military vehicles need to meet other specific codes and standards.
Aerospace
When it comes to manufacturing power management solutions for the aerospace industry, engineers must consider the effects of altitudes and the accompanying changes in weather.
Just like in ground vehicles, vehicles for military use have to meet other standards and requirements on top of using rugged power supplies.
Shipboards
Ship environments don’t exactly scream optimal conditions for electronic systems with the demanding external conditions. This rules out a significant amount of power supply options but no matter, ruggedized power supply to the rescue. These rather harsh environmental conditions necessitate precision-engineered power management solutions that of course meet the standard Naval requirements.
How a DC-DC Converter Works
Like I had earlier explained, DC-DC converters basically change the voltage, sometimes by increasing it or decreasing it.
Boost converters increase the voltage from a power source. You could have a power source of only 10 V and a boost converter kicks that up to 30V. You typically find these DC-DC boost converters in battery chargers or solar panels.
Bult converters on the other hand are responsible for reducing the voltage from the power supply. Remember the 10 V power supply? A DC-DC bulk converter could trim that down to just 5V. Said trimming down is achieved by increasing the current.
IoT Gateway vs Megaplex Gateway
Why Fiber Optic Terms Matter for DAS in 5G Networks
The World Through Large Format Mapping and Geospatial Imagery
Trending
-
Marketing & Analytics2 years ago
A Complete Guide To HubSpot’s New B2B Marketing, Sales Hub, and Prospecting Tool
-
3D Technology2 years ago
3D Scanner Technology for Android Phones: Unleashing New Possibilities
-
Marketing & Analytics2 years ago
How SMS Services And Software For Bulk SMS Sending Can Help Your Business Grow
-
3D Technology2 years ago
Mobile 3D Scanners: Revolutionizing 3D Scanning Technology
-
3D Technology2 years ago
3D scanning technologies and scanning process
-
Business Solutions1 year ago
Understanding A2P Messaging and the Bulk SMS Business Landscape
-
Business Solutions11 months ago
The Power of Smarts SMS and Single Platform Chat Messaging
-
Automotive1 year ago
DSRC vs. CV2X: A Comprehensive Comparison of V2X Communication Technologies