Connect with us

Business Solutions

MMDSmart Unveils New Sales Hubs to Boost Global Reach

Welcome to the exciting world of MMDSmart, where cutting-edge technology meets unparalleled global reach. We are thrilled to announce the unveiling of our game-changing sales hubs, poised to revolutionize the way businesses connect with their target markets worldwide. Get ready to witness a new era of efficiency and productivity as we take you on a journey through these innovative hubs that will supercharge your sales efforts like never before. Buckle up and get ready to soar higher than ever with MMDSmart!

Avatar photo

Published

on

July 1, 2021 – Tel Aviv-based smart messaging pioneer MMDSmart has opened new sales centres in Miami, USA, and Amsterdam, The Netherlands, to better serve its ever-growing customer bases in these diverse regions.

Offering communications solutions to partners in more than 100 countries, MMDSmart’s new offices will help deliver more localized, personal solutions.

“These new sales offices, alongside key appointments, will further strengthen our presence in these critical markets,” said Arie Frenklakh, MMDSmart’s CEO.

The Miami office opening coincides with the appointment of Glenn Stansbury, Director of Enterprise Sales, who will manage MMDSmart’s North and Latin Americas operations.

Glenn is an experienced telecom salesperson and mobile innovator who previously served as VP for mGage and HipCricket and Director of Business Development for Gold Mobile, working with many Fortune 100 companies.

He was responsible for several accounts, including American Express, Ford, Lincoln, Macy’s, Epsilon, Oracle, and IBM, and has worked on award-winning mobile campaigns, such as Macy’s Backstage Pass. His innovative ideas can still be found in every Ford and Lincoln vehicle sold in the US and Canada.

Alexander Hilarides, based in Amsterdam, will manage its Western European sales region.
As a seasoned enterprise sales executive with experience in SaaS, Adtech, digital marketing and MarTech, he has over 12 years’ experience building and managing high-performance marketing and channel teams throughout EMEA and the Benelux.

He has held roles at leading companies, such as Mailgun, GetResponse and MailJet, and worked on software solutions with companies like Google, Microsoft, Visa, Klarna, Trivago, Inditex Group (Zara.com), Etsy, and PVH.

Mr Frenklakh added: “We’ve seen significant growth in our Canada, USA and European business in the past few years, and with the addition of Glenn and Alex to our all-star team, we’ll be able to provide even better local support to our clients.”

About MMDSmart
Founded in 2007, MMDSmart, the smart messaging pioneer, provides a host of communications solutions to partners and organizations in over 100 countries.

Its MessageWhiz platform is the first results-driven enterprise messaging solution with a full-featured engagement platform, scalable plans to optimize its clients’ text messaging campaigns and a unique pay-by-conversion success option. It is also the first company offering end-to-end encrypted and securely transmitted mobile text messaging.

Website: https://messagewhiz.com/

Continue Reading

Business Solutions

H.265 miniature UAV encoders: A comprehensive Overview

H.265 miniature UAV encoders revolutionize aerial technology with advanced video compression, ensuring high efficiency and superior performance for modern UAV systems.

Avatar photo

Published

on

By

H.265 miniature UAV encoders

As the demand for high-quality, real-time video transmission from unmanned aerial vehicles (UAVs) continues to rise in both military and commercial applications, the need for efficient, compact video encoding solutions has become paramount. H.265 miniature UAV encoders represent a significant advancement in this space, providing robust video compression in a small, lightweight package ideal for drones with stringent size, weight, and power (SWaP) constraints. Leveraging the power of High Efficiency Video Coding (HEVC), also known as H.265, these encoders allow UAVs to deliver high-resolution video over constrained data links, enhancing situational awareness and operational effectiveness without overwhelming available bandwidth.

H.265 is a video compression standard that succeeds H.264/AVC and offers approximately double the data compression ratio at the same video quality level. This efficiency is particularly beneficial for UAV applications, where bandwidth and power availability are limited, especially during beyond-line-of-sight (BLOS) missions or in contested environments. With H.265 encoders, UAVs can stream 1080p or even 4K encoder video in real time while consuming significantly less data than older standards. This is critical for operations such as intelligence, surveillance, and reconnaissance (ISR), where maintaining video clarity over long distances or through relay networks is essential for accurate decision-making.

Miniature H.265 UAV encoders are engineered to operate under harsh environmental conditions while maintaining optimal performance. These devices are typically ruggedized, featuring extended temperature ranges, shock resistance, and electromagnetic shielding to ensure reliable operation in military or field environments. Despite their small size—often no larger than a deck of cards—they include advanced features such as low-latency encoding, dynamic bitrate control, encryption, and support for multiple streaming protocols including RTSP, RTP, and MPEG-TS. This allows them to integrate seamlessly into existing command-and-control infrastructure and support a variety of end-user applications, from real-time ground monitoring to autonomous navigation and object tracking.

H.265 miniature UAV encoders

The integration of H.265 encoders into small UAVs has significantly expanded the capability of tactical drone systems. For example, military units can deploy hand-launched drones equipped with these encoders to provide persistent ISR coverage over a battlefield, transmitting clear, actionable video intelligence back to command centers in near real time. Law enforcement agencies and border security forces also benefit from these technologies, using UAVs to monitor large or remote areas with minimal personnel. In disaster response scenarios, such encoders enable drones to deliver live aerial assessments of affected regions, helping responders prioritize actions and coordinate relief efforts efficiently.

Beyond video transmission, modern H.265 UAV encoders are increasingly integrated with onboard artificial intelligence modules that enable edge processing. This allows UAVs to perform real-time object recognition, motion detection, and scene analysis directly within the encoder, reducing the need to send raw data to centralized systems for processing. Such capabilities are crucial in time-sensitive missions where latency can affect outcomes, such as tracking moving targets or identifying threats in complex terrain.

Despite their many advantages, the deployment of H.265 miniature encoders does come with some technical considerations. The encoding process, while more efficient than previous standards, requires higher computational resources. Manufacturers must therefore strike a careful balance between processing power, thermal management, and energy consumption. Additionally, the compatibility of H.265 streams with legacy systems remains a factor, as not all ground stations or video players natively support HEVC decoding without updates or specialized software.

Manufacturers of H.265 miniature UAV encoders include companies such as IMT Vislink, Soliton Systems, Haivision, and VITEC, all of which provide solutions tailored to UAV and robotics applications. These encoders are often modular, allowing integrators to select configurations based on mission requirements, payload limitations, and transmission needs. As the ecosystem of compact, high-efficiency video systems grows, continued innovation in low-power silicon and AI integration is expected to drive the next wave of capability enhancements in this field.

In the evolving landscape of drone technology, H.265 miniature UAV encoders stand out as a critical enabler of high-performance video transmission. By combining advanced compression with minimal SWaP impact, these systems provide UAV operators with the tools to observe, analyze, and act with unprecedented precision and clarity—no matter how small the platform or how demanding the environment.

Continue Reading

Business Solutions

IEEE 802.11p and V2X Communication: Enabling Smarter, Safer Roads

IEEE 802.11p revolutionizes V2X communication, driving smarter, safer roads through advanced vehicle connectivity. This cutting-edge technology enhances transportation systems, enabling intelligent and secure interactions for a safer future.

Avatar photo

Published

on

By

IEEE 802.11p

Modern vehicles are no longer isolated machines; they are becoming intelligent, connected nodes within a larger transportation ecosystem. At the heart of this transformation is Vehicle-to-Everything (V2X) communication, which enables cars to talk to each other and to the infrastructure around them. One of the first and most influential technologies developed to support V2X is the IEEE 802.11p standard—a wireless standard specifically tailored for vehicular environments.

What is IEEE 802.11p?

IEEE 802.11p is an amendment to the IEEE 802.11 standard (commonly known as Wi-Fi), designed to enable wireless access in vehicular environments. It was approved in 2010 and forms the basis for Dedicated Short-Range Communications (DSRC).

Key Characteristics of 802.11p:

  • Frequency Band: Operates in the 5.9 GHz band reserved for Intelligent Transportation Systems (ITS).

  • Low Latency: Optimized for fast, real-time communication necessary for safety-critical applications.

  • Range: Effective communication range of up to 1 kilometer, suitable for high-speed vehicle interaction.

  • Decentralized Architecture: Enables direct communication (V2V and V2I) without the need for cellular or network infrastructure.

  • Robustness: Handles high-speed mobility and rapidly changing topologies typical of vehicular environments.
    IEEE 802.11p

Role of 802.11p in V2X Communication

V2X (Vehicle-to-Everything) is a broader term encompassing various communication paradigms, including:

  • V2V (Vehicle-to-Vehicle)

  • V2I (Vehicle-to-Infrastructure)

  • V2P (Vehicle-to-Pedestrian)

  • V2N (Vehicle-to-Network)

  • V2C (Vehicle-to-Cloud)

802.11p primarily supports V2V and V2I communications, forming the backbone of DSRC-based V2X implementations. Its low latency and direct communication capabilities make it ideal for applications such as:

  • Forward collision warnings

  • Intersection movement assist

  • Emergency electronic brake lights

  • Lane change warnings

Comparison with Cellular V2X (C-V2X)

As V2X technology has evolved, C-V2X (based on LTE and 5G standards) has emerged as a strong alternative to 802.11p. Here’s how they compare:

Feature IEEE 802.11p (DSRC) C-V2X (LTE/5G)
Latency ~10 ms ~5–10 ms (LTE), <5 ms (5G)
Coverage Short-range, direct Short + long-range via network
Deployment Mature, field-tested Growing, especially with 5G
Infrastructure Minimal (no cellular needed) Requires cellular networks (for V2N/V2C)
Interoperability Limited with C-V2X Newer versions support dual-mode

Adoption and Use Cases

Global Deployment:

  • United States: Initially favored DSRC based on 802.11p, though recent FCC rulings have shifted focus toward C-V2X.

  • Europe: ETSI has defined ITS-G5, a protocol stack based on 802.11p.

  • Japan and South Korea: Active use of DSRC for tolling and traffic safety.

Real-World Applications:

  • Collision avoidance systems

  • Smart intersections

  • Road hazard notifications

  • Platooning for commercial vehicles

  • Public transport priority systems

Advantages of 802.11p

  • Mature and Proven: Used in numerous pilot programs and early deployments.

  • Fast Time to Communication: No need for handshake protocols; devices can communicate almost instantly.

  • No Subscription Costs: Operates independently of cellular networks.

Limitations and Challenges

  • Scalability: In high-density traffic, packet collisions may reduce reliability.

  • Spectrum Allocation: Regulatory changes in some countries have limited the bandwidth available to DSRC.

  • Limited Ecosystem Growth: Many automakers and countries are shifting investment to C-V2X and 5G-based platforms.

Future Outlook

While 802.11p has laid the foundation for V2X communication, the industry is gradually pivoting toward more advanced and scalable technologies such as 5G NR-V2X. However, 802.11p remains relevant in regions where DSRC infrastructure is already deployed and continues to serve as a dependable option for immediate, low-latency vehicular communication.

Hybrid Solutions:

Some industry players are exploring dual-mode V2X devices that support both 802.11p and C-V2X, ensuring backward compatibility and smoother transitions.

 

IEEE 802.11p has played a pivotal role in launching the era of connected vehicles, offering reliable, low-latency communication tailored for high-speed mobility. While newer technologies like C-V2X and 5G are beginning to dominate the roadmap, 802.11p’s contributions remain foundational in the evolution of V2X systems. As the automotive industry moves forward, a mix of technologies, including legacy support for 802.11p, will ensure that safety, efficiency, and connectivity continue to advance on roads around the world.

Continue Reading

Business Solutions

Turning Up the Heat on Aging: Understanding Radio Frequency Skin Tightening

Discover how Radio Frequency Skin Tightening is revolutionizing non-invasive anti-aging treatments. This guide breaks down how RF technology works, its benefits for reducing wrinkles and firming skin, and why it’s becoming a go-to solution for those looking to rejuvenate their appearance without surgery.

Avatar photo

Published

on

By

Radio Frequency Skin Tightening

In the ongoing quest for youthful and rejuvenated skin, a variety of non-surgical medical aesthetic devices and technologies have emerged, each promising to turn back the clock. Among these, Radio Frequency (RF) skin tightening has gained significant popularity for its ability to address skin laxity, wrinkles, and overall skin texture without the need for invasive procedures or lengthy downtime.  

How Radio Frequency Works its Magic:

Radio frequency skin tightening utilizes electromagnetic waves to deliver controlled heat deep into the skin’s layers, specifically the dermis. This targeted thermal energy triggers a cascade of beneficial responses within the skin:  

Collagen Contraction: The heat causes existing collagen fibers to contract and tighten, providing an immediate firming effect. Think of it like shrinking a loose sweater.  

Collagen Stimulation: More importantly, the controlled thermal injury stimulates fibroblasts, the cells responsible for producing collagen and elastin. This prompts the generation of new, healthy collagen fibers over time, leading to long-term improvement in skin elasticity and firmness.  

Improved Circulation: The heating effect also enhances blood circulation in the treated area, bringing more oxygen and nutrients to the skin cells, further contributing to a healthier and more vibrant complexion.  

The Benefits of RF Skin Tightening:

The appeal of radio frequency technology lies in its ability to deliver noticeable results with minimal disruption to daily life. Key benefits include:

Non-Invasive: Unlike surgical facelifts, RF treatments require no incisions, stitches, or anesthesia, making them a comfortable and convenient option.  

 

Skin Tightening and Firming: The primary benefit is the visible tightening of loose or sagging skin on the face, neck, and body. This can improve the appearance of jowls, brow lines, and loose skin on the abdomen and arms.  

Wrinkle and Fine Line Reduction: By stimulating collagen production, RF can help to smooth out fine lines and wrinkles, resulting in a more youthful appearance.  

Improved Skin Texture and Tone: The treatment can enhance overall skin texture, making it smoother and more even-toned. It can also help to minimize the appearance of sun damage and enlarged pores.  

Gradual and Natural-Looking Results: The improvements from RF treatments are typically gradual, appearing over several weeks and months as new collagen is produced, leading to a natural-looking rejuvenation.  

Minimal Downtime: Most individuals experience little to no downtime after an RF session and can typically return to their normal activities immediately.  

Versatility: RF technology can be used to treat various areas of the face and body, including the forehead, cheeks, jawline, neck, décolletage, abdomen, arms, and thighs.

Suitable for Most Skin Types: Generally, RF treatments are considered safe for a wide range of skin types and tones.  

Radio Frequency Skin Tightening

What to Expect During an RF Treatment:

A typical RF skin tightening session involves the following:

Preparation: The skin in the treatment area is cleansed, and a conductive gel is applied to help the RF device glide smoothly and ensure efficient energy delivery.  

Treatment: A handheld RF device is moved over the targeted areas. You may feel a warming sensation, which is generally well-tolerated. Some devices incorporate cooling mechanisms to enhance comfort.  

Post-Treatment: After the session, the gel is removed, and a soothing lotion or sunscreen may be applied.  

The duration of a treatment session can vary depending on the size of the area being treated, typically ranging from 30 to 60 minutes. A series of treatments is usually recommended to achieve optimal and long-lasting results, with sessions spaced a few weeks apart. Maintenance treatments may also be advised to sustain the benefits over time.  

Potential Side Effects and Considerations:

While RF skin tightening is generally considered safe, some mild and temporary side effects may occur, including:

Redness: The treated area may appear flushed or red immediately after the procedure, which usually subsides within a few hours to a day.  

Swelling: Mild swelling or puffiness can occur but typically resolves within a day or two.  

Warmth or Tingling: A lingering sensation of warmth or tingling in the treated area is common and usually temporary.  

Dryness: Some individuals may experience temporary skin dryness.  

More serious side effects are rare when the procedure is performed by a qualified and experienced professional using FDA-approved devices. However, potential risks can include burns, blistering, or temporary changes in skin pigmentation, particularly if the treatment is not administered correctly.  

Choosing the Right Provider:

To ensure a safe and effective RF skin tightening experience, it is crucial to choose a reputable clinic and a qualified practitioner with specific training and experience in this technology. During your consultation, discuss your skin concerns, medical history, and expectations to determine if RF skin tightening is the right option for you.

Radio frequency skin tightening technology offers a promising non-surgical solution for those seeking to combat the signs of aging and achieve firmer, smoother, and more youthful-looking skin. By harnessing the power of controlled thermal energy to stimulate collagen production and tighten existing fibers, RF treatments provide a gradual and natural-looking rejuvenation with minimal downtime. While generally safe, it’s essential to understand the potential side effects and choose a qualified provider to maximize benefits and minimize risks on your journey to radiant skin.

Continue Reading

Trending